Search results for "generalized quantifier"

showing 3 items of 3 documents

Square of Opposition Under Coherence

2016

Various semantics for studying the square of opposition have been proposed recently. So far, only (Gilio et al., 2016) studied a probabilistic version of the square where the sentences were interpreted by (negated) defaults. We extend this work by interpreting sentences by imprecise (set-valued) probability assessments on a sequence of conditional events. We introduce the acceptability of a sentence within coherence-based probability theory. We analyze the relations of the square in terms of acceptability and show how to construct probabilistic versions of the square of opposition by forming suitable tripartitions. Finally, as an application, we present a new square involving generalized qu…

Square of oppositionSettore MAT/06 - Probabilita' E Statistica Matematicat-coherenceGeneralized quantifierSquare of oppositionSettore M-FIL/02 - Logica E Filosofia Della Scienza02 engineering and technology01 natural sciencesSquare (algebra)OpticsProbability theory0202 electrical engineering electronic engineering information engineering0101 mathematicsMathematicsbusiness.industry010102 general mathematicsProbabilistic logicCoherence (statistics)Imprecise probabilityconditional eventimprecise probabilityAlgebrag-coherencegeneralized quantifier020201 artificial intelligence & image processingbusinessSentenceacceptance
researchProduct

Probabilistic semantics for categorical syllogisms of Figure II

2018

A coherence-based probability semantics for categorical syllogisms of Figure I, which have transitive structures, has been proposed recently (Gilio, Pfeifer, & Sanfilippo [15]). We extend this work by studying Figure II under coherence. Camestres is an example of a Figure II syllogism: from Every P is M and No S is M infer No S is P. We interpret these sentences by suitable conditional probability assessments. Since the probabilistic inference of \(\bar{P}|S\) from the premise set \(\{M|P,\bar{M}|S\}\) is not informative, we add \(p(S|(S \vee P))>0\) as a probabilistic constraint (i.e., an “existential import assumption”) to obtain probabilistic informativeness. We show how to propagate the…

Transitive relationSequenceSettore MAT/06 - Probabilita' E Statistica MatematicaProbabilistic logicSyllogismConditional probability02 engineering and technologyCoherence (philosophical gambling strategy)Imprecise probabilityCombinatoricscoherence conditional events defaults generalized quantifiers imprecise probability.020204 information systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingCategorical variableMathematics
researchProduct

Imprecise probability assessments and the Square of Opposition

There is a long history of investigations on the square of opposition spanning over two millenia. A square of opposition represents logical relations among basic sentence types in a diagrammatic way. The basic sentence types, traditionally denoted by A (universal affirmative: ''Every S is P''), E (universal negative: ''No S is P''), I (particular affirmative: ''Some S are P''), and O (particular negative: ''Some S are not P''), constitute the corners of the square, and the logical relations--contradiction, contrarity, subalternation, and sub-contrarity--form the diagonals and the sides of the square. We investigate the square of opposition from a probabilistic point of view. To manage impre…

conditional eventimprecise probabilityg-coherenceSquare of oppositionSettore MAT/06 - Probabilita' E Statistica Matematicat-coherencegeneralized quantifierSettore MAT/01 - Logica Matematicaacceptance
researchProduct