Search results for "generalized quantifier"
showing 3 items of 3 documents
Square of Opposition Under Coherence
2016
Various semantics for studying the square of opposition have been proposed recently. So far, only (Gilio et al., 2016) studied a probabilistic version of the square where the sentences were interpreted by (negated) defaults. We extend this work by interpreting sentences by imprecise (set-valued) probability assessments on a sequence of conditional events. We introduce the acceptability of a sentence within coherence-based probability theory. We analyze the relations of the square in terms of acceptability and show how to construct probabilistic versions of the square of opposition by forming suitable tripartitions. Finally, as an application, we present a new square involving generalized qu…
Probabilistic semantics for categorical syllogisms of Figure II
2018
A coherence-based probability semantics for categorical syllogisms of Figure I, which have transitive structures, has been proposed recently (Gilio, Pfeifer, & Sanfilippo [15]). We extend this work by studying Figure II under coherence. Camestres is an example of a Figure II syllogism: from Every P is M and No S is M infer No S is P. We interpret these sentences by suitable conditional probability assessments. Since the probabilistic inference of \(\bar{P}|S\) from the premise set \(\{M|P,\bar{M}|S\}\) is not informative, we add \(p(S|(S \vee P))>0\) as a probabilistic constraint (i.e., an “existential import assumption”) to obtain probabilistic informativeness. We show how to propagate the…
Imprecise probability assessments and the Square of Opposition
There is a long history of investigations on the square of opposition spanning over two millenia. A square of opposition represents logical relations among basic sentence types in a diagrammatic way. The basic sentence types, traditionally denoted by A (universal affirmative: ''Every S is P''), E (universal negative: ''No S is P''), I (particular affirmative: ''Some S are P''), and O (particular negative: ''Some S are not P''), constitute the corners of the square, and the logical relations--contradiction, contrarity, subalternation, and sub-contrarity--form the diagonals and the sides of the square. We investigate the square of opposition from a probabilistic point of view. To manage impre…